
ON THE DE2ERMINATION OF STRESS CONCENTRATIONS 
ON THE BASIS 05' THE APPLIED THEORY 

In the present paper the possibility is investigated of using the equations 
of the applied theory of bentiing plates to calculate stress concentrations. 
The asymptotic expansion of the solution of the corresponding problems of 
elasticity theory obtained in [l] is utilized. It is shown that in a number 
of cases the calculation of stress concentrations on the basis of the applied 
theory is possible. 
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1. We consider a thin plate of thickness 2h , bounded by a cylindrical 
surface r, e We allow the plate to have a hole bounded by the cylindrical 
surface ra (Fig.1). We shall assume that the distance between r and I‘S 

1s sufficiently large In comparison with 
the thickness of the plate. At the same 
time we assume that the diameter a of 
the hole Is also considerably larger than 
the thickness of the plate. The surface 
I' of the plate is loaded by some system 

th; 
ot forces which is statically equivalent 
to zero, while the plane surfaces Ts of 
the plate are stress-free. In this case, 
as is known, a stress concentration occurs 

N1 
at ra . 

The methods of calculating the stress 
Fig. 1 concentrations in such problems on the 

basis of the applied theory have been 
treated In a number of we&s. A summary of the results may be found in [2]. 

The basic purpose of the present paper Is to elucidate the connection 
between -he relations of the applied theory and the exact solution of the 
corresponding problem in elasticity theory. 

We note that by the applied theory of bending of a plate we mean the theo- 
ry based on the relationships 

E (h” - 2%) a E(P- 2%) a \*.n I 

5,. = - 2 (1 - a2) az Aw, zvz = - 2 (1 - U~)-Q+~ a,=0 

where m(x,v) Is the displacement of points of the middle surface of the 
plate, which Is a blharmonic function determined by the Klrchhoff boundary 
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conditions, E is the elastic modulus, c is Poisson’s ratio, and s is 
the Laplace operator. 

dimensionless coordinates 
We denote the forces acting 02 ‘Yn’ b;ni~(siP c), 

sir ;). In [ l]l 1; was shown that the state of stress’of a solid 
plate bounded by the surface f, and subjected to the aforementioned forces 
may be represented in the following form for sufficiently small x =h/aa 

X exp J$!! + 2/#{2 5 
1 

1 
sin 5& K bkl (51) 

II ( 

3a2 
I i - nl .& + n? 8~ - . . . 

l2 )I 

’ x 

k=n s: 

Xexpy+(v-1) is,(c) [(l-nl,~+n~a~~-...)cp~~~,)+ 

p=1 

+~(-.,~~-n,~+...)c~~(s,)]oxP~+ jj nP(C)Tp[Tp(1-n12++ 

p=1 

30~ 

+ n12 s-jqjJ - . . . 
1 

cy3 (SI) -t (-- <; -I- 111 igi -nl -t J$ + . .) cPa (sl)]\ exp y -; . . , 

(2.1) 

+ (v - 1) i sp (5) [ (1 - /II 2% + 11,s 3% - . .) cpg (5-l) + 

p=1 

1 
+ yT; 

( 

a2 aP 
-- nl 4m - 111 do + . cp2 (a) exp -A- + 

) 1 T&J”1 

+i&$ ( 

0. 3az 
nT, (5) rp 1 - nl m + nP 8~12 - ) cp2 (a) exp F} + . 

p=1 

(2.2) 
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+ ~~~112 1 - nl& -I- n12 &> - . . . 

k=o 

+ ; ‘p (0 [r, (I - 111 :&I $- ma g - . . .) cp3 (s,) -t 
p=1 

(3.4, 

k=o 

p=1 

Here ii, is the radius of curvature of the external contour. All of 
the remaining notation Is explained In [l and 3-J. We recall only that 
$( s,,fi,) Is a certain blharmonlc function represented by the series 
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4 f% 4 = $lJ 6% 4 -i- I& (SI, n3 + h292 (a, 4 4- = ’ f 

where )Ofel,ni ) is the Solution of the problem of bending of a solid plate 
given by the applied theory. The functions $ (~1, ni), b,i (~3, and. cpi (3~ are 
determined by the bound%ry conditions on I', 
of linear algebraic equations. 

from % oertain infinite system 

It follows from (2.1) to (2.6) that if nt is sufficiently large in abso- 
lute value, i.e. at a sufficiently great distance into the plate from F 
(in practice about two to three plate thicknesses), then we need conside; 
only the biharmonic state of stress, and hence we may amme that w&thin the 
plate the state of stress is determined by Formulas 

We note that Formulas (2.7) differ from (1.1) only by terms of higher 
order In X s 

Since for the time being we have %ssumed that the plate does not have a 
hole, the stresses acting on the surface ra , accordhg to f2.71, are 

where the quantities no, sa and .Fla refer to rz (Fig.1). 

In order to free To of stress it is necessary to remove the stresses 
(2.8) to (2.10), I.e. to superimpose on (2.7) the state of stress correspond- 
ing to the solution of the problem of elasticity theory for an infinite plate 
with a hole rll 
given by (2-8) to 

on which the stresses have the values -~%3--c'n4Spt -t8kr I 
12.10). It is understood that the state of stress must be 

compati%ble, i.e. the plane boundaries r3 of the plate must remadn free of 
stress and the state of stress must disappear for large n2 . Below we wilY. 
call this state of stress the refleated state, for short. The reflected 
state of stress Is also derived by the method explained In El]. ConsequentlY, 
this state of stress will have the form Cl] 

1 
- v-+-g I.2 ( 1 c&Q-;_ w. ; I(v-11)sp~5)+~p’a,(1;)1(1+ m&S 

p=1 

3a2 +n22gj.g+"' )]&exP [-y) -t(v--1) 5 s,G)[(li-n2&4- 
p=1 



3aa 
+nz2~+... )cp;o+~p(~2&2+n2~+.*.)cp:(s2)Jexp (q+ 

+ i R1mp[Tp(1+nz&2+n22~2+...)cp3Sn)+ 
p=1 

+(-++2g$+"a&&+... )cPz*W]}exp (-F)+... t2.111 

++h@---) fg ~,(5)(1+n2~+n2~~~1-...)cp~(s~)exp(_~~)+ 
p=1 

+ 2pv{-2 i sin 6J&[bh: (s2)(1 + n2 &2-f n22%2 + . . 

k=O 

.)J,exp (- y) + 

+ (v - 1) ; sp (PI [(I + n2. G2 + n-22 8% + . .) cp; (sz) + a ( n2G2 + 
p=1 P 

aa +na2-+ . ..) cp*2(s2)]exp (- y) &g ; npmp(l+ n2&+ 

p=1 

3aa 
+n22m2+... cpz* 

) 
(sdexp -T }+... 

( 1 
(2.12) 

$8, = w 

-~~~)}+Zpl(--~a*sina,l (I + n2&-+ 

3as 
+na2gj+... ) bkl*Wexp (-~)}+2~h’{~osin5~~[~~(l+ na&+ 

3aa 
+n2'8Rz"+... ) ( a 3a2 

bk~(s2)-5k I+ n2m$. npa8Rz-J+... 
) bk; (Sz) - 

( 

a Ilaa 
- _-_ L a" 

& mgRa2+n2 2 as22+.. . ) bkr (s2)]exp (- y) + 

t- ;, z fpnpCI[cp~ (s2)(~ + n2&+ n228i$ + . . .)]:,exp (- y)} + . . . (2.13) 
p=1 
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1 32 
i- n2-2- + . . . ) b&)+5k(1 ‘- 3aZ n2 Gz f- n22 8x2 + . .) bk; (sz)] exp (- F) + 

+ 5 I& rp i5) [ c,?* (s2) (1 + jh & -+ 1z2* $$ + . .)I,, exp (_ l$?)} + . . . (2.15) 
rJ=l 

where +*(a D, n,) Is a blharmonlc function having the form 

+p;(s2)]cxP (-y),... (2.16) 

The boundary values for +,*(sp, n2) and the functions 

bk; (St) (i = 1, 2, . ..). c,f (s?) (i == 2, 3, 4, . . .) 

8x-e determined from an Infinite system of linear algebraic equations [I]. 
The boundary conditions for &,*(s2, n,) are given by the relations 

For determining the functions I-'h;(ss), rPz(sp) we make use of the equations 
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In FOrmUlas (2.17) to (2.20) 

(p = 1, 2, 3, . . .) (2.20) 

(2.22) 

Lt follows from (2.17), (2.18) and (2.211, If It Is noted that the state 
of stress given by $,*(s,, a,) must vanish at infinity, that )O*y(so, n,) 
Is the solution of the applied theory which frees lr of the stresses deter- 
mined by $ (sa, na ) and which corresponds to zero stress at Infinity. We 
will call &Is solution for short, the reflected solution of the applied 
theory. Furthermore, from (2.17), (2.20) and (2.22 
important fact: the right-hand side of the system 2.20) reducea to zero t 

there follows a very 

In the present case, hence It follows, as was shown in [l], that all 
Cy,? (SE) e 0, while the bK (so), determined from (2.19) are In the general case 

different from zero. Therefore the state of stress on the contour Ta for 
ne= 0 Is given by Formulas 

p=1 



+w3{ 5 
k=o 

cos “ktbk;’ (%?) + fjl &, rp (5) cp; (83)) + . - . = 0 

r 
SL = 

r,; + zs,; = 2pvP (1 - t;“) & A :9 + w*)/__” - 

- 2ph 2 ok cos uk cbk; (sa) + 2ph 

00 

k=O 

2 { - i COS a/,.T; [ - T& bk; h) + ‘kbk; (Sz)]\ + . 
k=o 

The relation (2.24) shows that the stress u, on I’:, has the form 

u, = USlh + asah2 + uJb3 + . . . 

. . (2.27) 

(2.26) 

I2.28) 

(2.29) 

where the term c,, A corresponds to the solution of the applied theory. 

Thus the error in determining the stress u, according to the applied 
theory has at least the next higher order of magnitude In h than the stress 
Itself. This conclusion is important, since very often the stress concentra- 
tion coefficient around the hole Is determined by the value of Q, 

The stresses and 7 In the exact solution are zero on r 
the applied theor>‘glves no?&ero values for them in the general ca”se. H°K:Er) 
we have here the well-known situation in which the boundary conditions on 
the tangential stresses are not satisfied. These boundary conditions are 
satisfied in the applied theory only In the sence of Klrchhoff. Nevertheless, 
this circumstance still allows the exact asymptotic determination of the 
stress c, , as shcwn here. 

The case of 71X Is somewhat more complicated. From (2.27) we obtain for 
7‘1 

+ 2pvh2 { - 5 cos a,< [ -&& f%) i- fl,b,; (sz) 
11 

+ . . . 
k=n 

(3.30) 

where the first term corresponds to the solution of the applied theory. From 
(2.30) It is clear that in the general case Is actually of the first 
order In X in the exact solution, while at ice same time it 1s assumed in 
the applied theory that 7,, is a second order In X . Thus the applied 
theory here introduces an error In the order of the quantity considered. 

Furthermore, the stress cr, Is equal to zero according to the applied 
theory, while in reality It Is of second order in h . 

From the preceding remarks it follows that If the stress concentration at 
ra Is determined not on the basis of o, , but according to any composite 
characteristic of the state of stress containing 7,* (for example, the 
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maximum stress), then the use of the applied theory may entail an error Of 
the same order In X as the quantity Itself, characterizing the stress con- 
centration. 

We now consider the auestlon in what cases the term of first order in a 
In the expression for ;,, vanishes. Obviously the necessary and sufficient 
condition for this Is that all b,:(8,) be equal to zero. From (2.19) It 
follows that In this case 

2 (- 1y+1 
Sk8 (k = O,l, 2,. . .) (2.31) 

Substituting (2.31) Into (2.18) and taklng note of (2.21) and (2.22), In 
this case we obtain 

from which It follows that the solution of the applied theory must satisfy 
the boundary conditions for separately, and not only In the 
sense of Klrchhoff. 

T,, and 7,. 

Note that under these conditions c,f (sJ~0(p = 1, 2, S,...). 

The calculation of the stress concentration on the basis of the applied 
theory for a reinforced hole Is very Important from the practical point of 
view. 

Very often the calculation of the reinforcing ring Is alSO carried out on 
the basis of the applied theory of bending of plates 143. It is clear from 
the preceding that the applied theory may provide an asymptotlca1ly correct 
value of the concentration coefficient (If it is determined from the Stress 
a,) only in the case where the width of the reinforcing ring la several 
times greater than Its thickness. If however the width of the reinforcing 
ring is comparable to or even less than Its thickness, then In that Case the 
edge effects associated with the rotational and potential stress fields In 
the reinforcing ring will not be damped. The posslblllty of using the applied 
theory in that case must be further Investigated. In exactly the same Way, 
It Is also necessary to consider the case where the state of deformation In 
the reinforcing ring 1s described on the basis of Kirchhoff's theory of thin 
rods. 
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